

Poster Sessions

[P1] Poster Session 1	
Session Date	Oct. 17(Thu.), 2024
Session Time	09:00-10:30
Session Room	Room B (Vernazza, 3F)

[P1-001]

Double Passivation Effect of AlGaInP Based Red Micro-LEDs

Seung-Hyun Mun, Je-Sung Lee, Soo-Young Choi, Jaeyoung Baik, Jin-Soo Kim, Jeongwoon Kim, Seung-Hyeok Lee, and Dong-Seon Lee

Gwangju Institute of Science and Technology, Korea

[P1-002]

Efficiency Improvement of InGaN-Based Micro-LEDs via Indium Tin Oxide p-Electrodes

Cesur Altinkaya, Daisuke lida, and Kazuhiro Ohkawa King Abdullah University of Science and Technology (KAUST), Saudi Arabia

[P1-003]

Acetylenic Coupling on Cupric Oxide Photocathode for Accelerating Solar-to-Hydrogen Conversion Hoki Son, Periyayya Uthirakumar, and In-Hwan Lee Korea University, Korea

[P1-004]

Integration of Multiple Blue InGaN/GaN Microrod-LED Alignment Using Dielectrophoresis with Flexible

Pil-Kyu Jang, Yeong-Hoon Cho, and In-Hwan Lee Korea University, Korea

[P1-005]

AlGalnP Red Nanohole-Structure LED with Shaped Au/SiO2 Nanoparticles for Localized Surface

Sang-Bum Kim, Pil-Gyu Jang, and In-Hwan Lee Korea University, Korea

[P1-006]

vdWE(van der Waals Epitaxy) of GaN on Amorphous Substrate through rGO (Reduced Graphene Oxide) **Buffer by Sputtering**

Gyulim Kim, Hoki Son, and In-Hwan Lee Korea University, Korea

[P1-007]

Achieving Vertical Alignment of InGaN/GaN Nanorod LEDs in Nanohole Electrodes via Dielectrophoresis Jiwon Park, Yeong-Hoon Cho, Pil-Kyu Jang, Sangbum Kim, Seungjae Baek, Taehwan Kim, and In-Hwan Lee Korea University, Korea

[P1-008]

An Arrays of Blue InGaN/GaN Nano-LEDs Integrated with Localized Surface Plasmon of Ag/SiO₂ **Nanoparticles**

Yeong-Hoon Cho, Seung-Jae Baek, Tae-Hwan Kim, Pil-Gyu Jang, Sang-Bum Kim, Ji-won Park, and In-Hwan Lee

Korea University, Korea

[P1-010]

Homogenous Metallization of Through-Glass Vias with Floating Plating based on the Synergistic Effect of Capillary Rise and van der Waals

Changmin Yun, Hoki Son, and Inhwan Lee Korea University, Korea

[P1-011]

New Solution Growth of AIN Single Crystals Using Fe-Cr Based Fluxes

S. Li, M. Adachi, M. Ohtsuka, and H. Fukuyama Tohoku University, Japan

[P1-012]

Improved Alignment of GaN Nanorod LEDs Using Insulator-Based Dielectrophoresis

Yeong-Hoon Cho and In-Hwan Lee Korea University, Korea

[P1-013]

Improved Carrier Confinement in Small-Sized Green Micro-LEDs

A. B. M. H. Islam¹, T. K. Kim², J. Bae³, Y.-J. Cha¹, H. Lee¹, C. Park¹, J. Oh¹, M. Kim¹, I. Choi³, J. W. Seo¹, D.-P. Han⁴, J. O. Song², D.-S. Shin³, J.-I. Shim³, and J. S. Kwak¹

¹Korea Institute of Energy Technology, Korea, ²Wavelord Co., Ltd., Korea, ³Hanyang University, Korea,

[P1-014]

Spectral Imaging Analysis of InGaN Quantum Wells Using Tensor Decomposition

Kazunori Iwamitsu¹, Kenta Sakai², Zentaro Akase¹, Atsushi A. Yamaguchi², and Shiqetaka Tomiya¹ Nara Institute of Science and Technology, Japan, 2Kanazawa Institute of Technology, Japan

[P1-015]

Analysis of Thermal Dynamics due to Luminescence of GaN-Based Micro LEDs Using Optical Methods

Jung-ki Park¹, Jae-sun Kim¹, Gyeongeun Choi¹, Kyung-rok Kim¹, Hye-jun Yun¹, Sung-min Hwang², Won Taeg Lim², Seoungyoung Lim³, and Jung Hoon Song^{1,3}

¹Kongju National University, Korea, ²Soft-EPi, Korea, ³Accu Optotec, Korea

[P1-016]

Strain Profiling and Temperature Dependence of Single-Photon Emitter in GaN

Gyeong Eun Choi¹, Jae Sun Kim¹, Jung Ki Park¹, Kyung Rok Kim¹, Hye Jun Yun¹, Seong Young Lim², and Jung-Hoon Song^{1,2}

¹Kongju National Unviersity, Korea, ²Accu Optotec, Korea

[P1-017]

Enhancing Optical Performance of Flat-Type GaN-Based Light-Emitting Diodes via Multiple Local **Breakdown Conductive Channels**

Dae-Choul. Choi, Seung Hun. Lee, and Sung-Nam. Lee Tech University of Korea, Korea

[P1-019]

Integrating Circadian and Visual Benefits in LED Lighting with RGBYW Channels

Lvyun Chen¹, Zhizhong Chen¹, Zhuoyao Ma², Qihong Zhou¹, Lun Song², Zhuojian Pan¹, Chuhan Deng¹, Haodong Zhang¹, Boyan Dong¹, Yiran Wu¹, and Fei Jiao¹

¹Peking University, China, ²Beijing Institute of Basic Medical Sciences, China

⁴Pukyong National University, Korea

[P1-020]

Effect of Cooling Rate on Solution Growth of AIN Crystal Using Fe-Cr-Ni Flux

Makoto Ohtsuka, Go Shinnoda, Masayoshi Adachi, and Hiroyuki Fukuyama Tohoku University, Japan

[P1-021]

Examining the Influence of Growth Temperature on n-AIGaN Buffer Layer and Quantum-Well of (228-230 nm)-Band far-UVC LEDs

M. Ajmal Khan¹, Mitsuhiro Muta², Hiroyuki Oogami², Kohei Fujimoto^{1,3}, Yuya Nagata^{1,3}, Yukio Kashima¹, Eriko Matsuura1, Hiroyuki Yaguchi3, Yasushi Iwaisako2, and Hideki Hirayama1 ¹RIKEN Cluster for Pioneering Research (CPR), Japan, ²Nippon Tungsten Co., Ltd., Japan, ³Saitama University,

Japan

[P1-022]

Synthesis of AIN Crystals by Solution Growth Method Using Fe-Cr-Ni Fluxes

Go Shinnoda, Masayoshi Adachi, Makoto Ohtsuka, and Hiroyuki Fukuyama Tohoku University, Japan

[P1-023]

An Approach to Enhancing Deep Ultraviolet Luminescence by a Combinatorial Semipolar AlGaN **Quantum Well Structures**

Ge Gao, Li Chen, Wei Guo, and Jichun Ye Chinese Academy of Sciences, China

[P1-024]

Selective Area Regrowth and Characterization of GaN by Hydride Vapor Phase Epitaxy

Hyojung Bae¹, Hae-Gon Oh², Young-Jun Choi², Hae-Yong Lee², and Jin-Woo Ju¹ ¹Korea Photonics Technology Institute, Korea, ²LumiGNtech Co., Ltd., Korea

[P1-025]

The Multi-Color MicroLED Technology with High-Pixel Density Implemented through Selectively Lateral **Growth Method**

Hyung-Gu Kim¹, Chang-Mo Kang², Jun-Beom Park¹, Sang-Hoon Han¹, In-Seong Cho³, and Tak Jeong¹ ¹Korea Photonics Technology Institute, Korea, ²Pusan National University, Korea, ³Soft-EPi, Korea

[P1-026]

Low-Temperature Buffer Growth of GaN on Graphene for Exfoliable Micro-Pyramidal GaN Structures

Jeongho Kim, Baul Kim, and Yong-Hoon Cho

Korea Advanced Institute of Science and Technology, Korea

[P1-027]

Etching-Free Fabrication of Sub-Micron Light-Emitting Diode Pixel Arrays by Helium Ion Irradiation

Ji-Hwan Moon, Baul Kim, Minho Choi, Kie Young Woo, Byung Su Kim, Seonghun Ahn, Seongmoon Jun, Yong-Ho Song, and Yong-Hoon Cho

Korea Advanced Institute of Science and Technology, Korea

[P1-028]

Active-Layer Characteristics of Eu-Doped GaN-Based Red Light-Emitting Diodes Investigated by **Photoexcitation Measurements**

Ilqyu Choi¹, Sangjin Min¹, Dong-Soo Shin¹, Yasufumi Fujiwara², and Jong-In Shim¹ ¹Hanyang University, Korea, ²Ritsumeikan University, Japan

[P1-029]

Pure Single-Photon Emission from InGaN Quantum Dot Embedded in a GaN Nanowire Using Focused-Ion-Beam Induced Luminescence Quenching Method

Yubin Je¹, Seongmoon Jun¹, Neul Ha¹, Noelle Gogneau², and Yong-Hoon Cho¹

¹Korea Advanced Institute of Science and Technology, Korea, ²French National Centre for Scientific Research, France

[P1-030]

Indium-Rich InGaN/GaN Multi Quantum Wells Red LEDs

Joonghoong Choi, Won Kwang Yang, and Young Joon Hong Sungkyunkwan University, Korea

[P1-031]

Fabrication of GaN Nanorods Using Metal-Assisted Photochemical Etching Technique

ChangSoo Kim and Young Joon Hong Sungkyunkwan University, Korea

[P1-032]

High-Efficiency Color Conversion Films based on Three-Dimensional Photonic Crystals

Taehun Kim and Kyungtaek Min Tech University of Korea, Korea

[P1-033]

Integrated Micro LEDs with Optoelectronic Synapses for Implement Neuromorphic Device

Y.-J. Cha¹, T. K. Kim², J. Oh¹, H. Lee¹, M. Kim¹, C. Park¹, J. W. Seo¹, A. B. M. H. Islam¹, S. W. Cho³, and J. S. Kwak¹ ¹Korea Institute of Energy Technology, Korea, ²Wavelord Inc., Korea, ³Sunchon National University, Korea

[P1-034]

Optical Characteristics of InGaN-Based Red µLED by Changing the Structure of the Emitting Area at 400 um²

Sungoh Cho1, Jung-Hong Min1, Sung Hoon Jung1, Shang Hern Lee1, Hwa Sub Oh1, and Tae-Hoon Chung12 ¹Korea Photonics Technology Institute, Korea, ²Chonnam National University, Korea

[P1-035]

Investigated Aging Test of Red/Green Micro-LEDs

Hsin-Ying Lee, Yan-Zhang Chen, Mu-Ju Wu, and Ching-Ting Lee National Cheng Kung University, Taiwan

[P1-036]

Emission Color Control of InGaN/GaN Nanocolumn Arrays on Si Substrates Grown via Nanotemplate Selective Area Growth

Kota Hoshino, Rie Togashi, and Katsumi Kishinio Sophia University, Japan

[P1-037]

Fabrication of InGaN-Based Vertical Blue Laser Diodes with p-Contact Formed by Chemical Wet

J. W. Seo¹, A. B. M. H. Islam¹, Y.-J. Cha¹, H. Lee¹, C. Park¹, J. Oh¹, M. Kim¹, S. R. Jeon², and J. S. Kwak¹ ¹Korea Institute of Energy Technology, Korea, ²Korea Photonics Technolology Institute, Korea

[P1-038]

Structural Characteristics and Optical Properties of Nanoporous GaN for Quantum Dot Embedding Jaeyoung Baik, Jeongwoon Kim, Je-Seng Lee, Jin-Soo Kim, and Dong-Seon Lee Gwangju Insititute of Science and Technology, Korea

[P1-039]

Stimulated Emission at 247 nm From AlGaN/AlN Multiple Quantum Wells on 4H-SiC Substrates

Yanan Guo^{1,2}, Ruijie Zhang^{1,2}, Han Wu^{1,2}, Zhibin Liu^{1,2}, Jianchang Yan^{1,2,3}, Jinmin Li^{1,2,3}, and Junxi Wang^{1,2} ¹Chinese Academy of Sciences, China, ²University of Chinese Academy of Sciences, China, ³Advanced Ultraviolet Optoelectronics Co., Ltd., China

[P1-040]

Analysis of AlGalnP-Based Red Micro Light-Emitting Diodes with Different Quantum-Well Structure

Soo-Young Choi, Seung-Hyun Mun, Je-Sung Lee, and Dong-Seon Lee Gwangiu Institute of Science and Technology, Korea

[P1-042]

Low-Threshold UV-B Laser Diode With Short-Period Superlattice Upper Waveguide Laver

Rui Ren^{1,2}, Yanan Guo^{1,2}, Zhibin Liu^{1,2}, Jinmin Li^{1,2,3}, Junxi Wang^{1,2}, and Jianchang Yan^{1,2,3} ¹Chinese Academy of Sciences, China, ²University of Chinese Academy of Sciences, China, ³Advanced Ultraviolet Optoelectronics Co., Ltd., China

[P1-043]

Epitaxial Growth of GaN on Glass Substrates via Electron Beam Assisted Sputtering

C. Park, Y.-J. Cha, A. B. M. H. Islam, J. Oh, M. Kim, H. Lee, J. Seo, and J. S. Kwak Korea Institute of Energy Technology, Korea

[P1-044]

Nano-Engineered InGaN Micro-LEDs towards Chip-to-Chip Interconnections

Zhenhao Li¹, Zengyi Xu², Xianhao Lin², Xinran Zhang¹, Luming Yu¹, Bo Liu¹, Zhibiao Hao¹, Yi Luo¹, Changzheng Sun¹, Bing Xiong¹, Yanjun Han¹, Jian Wang¹, Hongtao Li¹, Lin Gan¹, Nan Chi², and Lai Wang¹ ¹Tsinghua University, China, ²Fudan University, China

[P1-045]

Exciton-Polariton Condensate in Gallium Nitride Superscar Mode Cavity at Room Temperature

Chan Young Sung¹, Hyun Gyu Song², and Yong Hoon Cho¹

¹Korea Advanced Institute of Science and Technology, Korea, ²Korea Institute of Science and Technology, Korea

[P1-047]

Micro-Photoluminescence Spectroscopy of InGaN Quantum Wells on Convex Lens-Shaped GaN Microstructures

Akitoshi Takahama, Yoshinobu Matsuda, Mitsuru Funato, and Yoichi Kawakami Kyoto University, Japan

[P1-048]

Investigation on Mg Diffusion in InGaN LED Studied by Deep-Level Transient Spectroscopy and Thermal Admittance Spectroscopy

Bo Liu¹, Zilan Wang², Haoyang Li², Zhibiao Hao¹, Yi Luo¹, Changzheng Sun¹, Bing Xiong¹, Yanjun Han¹, Jian Wang¹, Hongtao Li¹, Lin Gan¹, and Lai Wang¹

¹Tsinghua University, China, ²Dalian University of Technology, China

[P1-049]

Structural and Optical Properties of Strain-Stress Relaxed InGaN-Based Micro LED on Nanoporous GaN **Double Layer**

Sang-Ik Lee, Hoki Son, and In-Hwan Lee Korea University, Korea

[P1-050]

Excitation Spot Size Dependence of Photonic and Exciton Polaritonic Modes in a GaN Microwire Gwang Kim¹, Hyun Gyu Song², and Yong Hoon Cho¹

¹Korea Advanced of Science and Technology, Korea, ²Korea Institute of Science and Technology, Korea

[P1-051]

Homoepitaxial Growth on a-Plane AIN Template by HVPE

Shunki Ito, Ryota Akaike, Hiroki Yasunaga, Takao Nakamura, and Hideo Miyake Mie University, Japan

[P1-052]

Electron Beam-Excited Light Source Emitting at 230 nm Using AlGaN/AIN Multiple Quantum Wells

Ryoya Iwase¹, Ryota Akaike¹, Hiroki Yasunaga¹, Takao Nakamura¹, Masayoshi Nagao², Katsuhisa Murakami², and Hideto Miyake¹

¹Mie University, Japan, ²National Institute of Advanced Industrial Science and Technology, Japan

[P1-053]

The Composited High Reflectivity P-type Electrodes with Patterned ITO for AlGaN-Based Ultraviolet **Light Emitting Diodes**

Jing Lang, Fujun Xu, Jiaming Wang, Chen Ji, Weikun Ge, and Bo Shen Peking University, China

[P1-054]

GalnN/GaN Multi Quantum Shell (MQS) Nano Pyramid with a GalnN Layer

Yuta Hattori¹, Weifang Lu², Kosei Kubota¹, Aoi Nakagawa¹, Naoto Hukami¹, Satoshi Kamiyama¹, Tetsuya Takeuchi¹, and Motoaki Iwaya¹

¹Meijo University, Japan, ²Xiamen University, China

[P1-055]

AlGaN Quantum Wells Grown on Cubic Boron Nitride

Chen-Da Du¹, Ting-Hao Chang¹, Yun-Chorng Chang², and Kun-Yu Lai¹ ¹National Central University, Taiwan, ²Research Center for Applied Sciences, Taiwan

[P1-056]

AIN/GaN Digital Alloys with High Average AI Compositions and DUV LEDs Grown by Molecular Beam **Epitaxy**

Siqi Li¹, Pengfei Shao¹, Xiao Liang¹, Songlin Chen¹, Xiaoquan Xing¹, Tao Tao¹, Zili Xie¹, Bin Liu¹, M. Ajmal Khan², Li Wang², T. T. Lin², Hideki Hirayama², Rong Zhang^{1,3}, and Ke Wang^{1,2}

¹Nanjing University, China, ²RIKEN, Japan, ³Xiamen University, China

[P1-057]

HfO₂-Based Memory Transistor for Driving Micro-LED Display

Sim Hun Yuk, Ho Jin Lee, Seok Hee Hong, Sung Keun Choi, and Tae Geun Kim Korea University, Korea

[P1-058]

Growth of AlGaN Channel HEMT with Superlattices by MOCVD

Jooyong Park, Joocheol Jeong, Shyam Mohan, Joonhyuk Lee, Jaejin Heo, and Okhyun Nam Tech University of Korea, Korea

[P1-059]

Study of Normally-Off p-GaN/p-AIGaN Step Gate HEMT Grown on AIN/SiC

Jaejin Heo, Joocheol Jeong, Shyam Mohan, Jooyong Park, Joonhyuk Lee, and Okhyun Nam. Tech University of Korea, Korea

[P1-060]

Unveiling the Potential of Pulsed Flow Growth Techniques to Realize the Al-Rich AlGaN Channel HEMT Shyam Mohan, Joocheol Jeong, Jooyong Park, Joonhyuk Lee, Jaejin Heo, and Okhyun Nam. Tech University of Korea, Korea

[P1-061]

The Influence of Sapphire Substrate Low Angle Grain Boundaries on HVPE Growth of Gallium Nitride Crystal

Yongliang Shao, Baoguo Zhang, Haixiao Hu, Xiaopeng Hao, and Yongzhong Wu Qilu University of Technology, China

[P1-062]

Power and Thermal Stress Characterizations of AlGaN/GaN HEMTs: A Comprehensive Study at Varying **Elevated Temperatures**

Surajit Chakraborty and Roy Byung Kyu Chung Kyungpook National University, Korea

[P1-063]

Gate Leakage Current Reduction for Blocking Voltage Improvement on GaN-on-Si HEMTs Chen-Hao Wu, Yi-Hong Chen, Yi-Wan Wang, and Yue-ming Hsin

National Central University, Taiwan

[P1-064]

XPS Analysis of Fe-Doped GaN Using First-Principles Calculations

Rina Yabuta and Masato Oda Wakayama University, Japan

[P1-066]

A Study of the Initial Stage of Crystal Growth of NbN on AIN(0001) by First-Principles Calculation

Ryuji Nakagoshi and Masato Oda Wakayama University, Japan

[P1-067]

Thermal Hot Spot and Its Dissipation to Substrate Investigated by Simultaneous Thermal Imaging of GaN Layer and Si Substrate in Power Device Structure

Jae Sun Kim¹, Gyeong Eun Choi¹, Jung Ki Park¹, Kyung Rok Kim¹, Hye Jun Yun¹, Seongyoung Lim², Deok Gyu Bae³, Young Boo Moon⁴, and Jung Hoon Song^{1,2}

¹Kongju National University, Korea, ²Accu Optotec, Korea, ³Hexasolution Co., Ltd., Korea, ⁴UJL Inc., Korea

[P1-068]

Small Signal Characteristics of AlGaN/GaN Light-Emitting HEMTs

Yao-Luen Shen, Po-Chen Chen, and Chih-Fang Huang National Tsing Hua University, Taiwan

[P1-069]

Enhancing Bonding Energy and High-Temperature Stability through Surface Activated Bonding with Al₂O₃ Auxiliary Layer

Xiangjie Xing^{1,2}, Hongze Zhang^{1,2}, Xinhua Wang^{1,2}, Fengwen Mu³, Sen Huang^{1,2}, Qimeng Jiang^{1,2}, Ke Wei^{1,2}, and Xinyu Liu^{1,2}

Institute of Microelectronics of Chinese Academy of Sciences, China, ²University of Chinese Academy of Sciences, China, ³Innovative Semiconductor Substrate Technology Co., Ltd., China

[P1-070]

Theoretical Study on Structural Stability and Polarization Switching of ScAIN Alloys: Effect of Lattice **Constraints**

Takuto Miyamoto, Toru Akiyama, and Takahiro Kawamura Mie University, Japan

[P1-071]

High Electron Mobility of Exceeding 2000 cm²/Vs by Sharpening the AlGaN/GaN Heterointerface Grown on Si Substrate

Jumpei Tajima, Hajime Nago, Shinya Nunoue, and Toshiki Hikosaka Toshiba Corporation, Japan

[P1-072]

Substrate Bias Induced V_{TH} and R_{ON} Instability in p-GaN HEMTs

C. Feng, X. Liu, J. Wu, D. Mao, R. Du, Z. Cai, X. Zhang, N. Gong, Y. Shi, K. Wu, C. Li, X. Wang, H. Hu, W. Zeng, D. Zhou, and Y. Wan Shenzhen Pinghu Laboratory, China

[P1-074]

Device-Level Thermal Management of Ultrawide Bandgap Al, Ga1, N Channel High Electron Mobility **Transistors**

Jisu Kim, Jongwon Baek, Changhwan Song, and Jungwan Cho Sungkyunkwan University, Korea

[P1-075]

Enhancing Breakdown Voltage of GaN HEMTs by Using a ZrO, Passivation Layer

Sheng-Kai Chen¹, Zih-Jyun Hong¹, Yen-Feng Lu¹, Shao-Shing Hsue¹, Chang-Hong Shen², and Jen-Inn Chyi¹ ¹National Central University, Taiwan, ²Taiwan Semiconductor Research Institute, Taiwan

[P1-076]

Growth and Characterization of Vertical GaN PIN Structures with Compositionally Graded AIGaN Drift Layers

Joocheol Jeong, Shyam Mohan, Jooyong Park, Joonhyuk Lee, Jaejin Heo, and Okhyun Nam Tech University of Korea, Korea

[P1-077]

High Field Effect Mobility in Normally-Off O2 Plasma-Treated GaN-Based MIS-HEMTs with Relatively Thick AIGaN Barrier Layer

Kishi Sekiyama¹, Masaki Ishiguro¹, Ali Baratov¹, Shoqo Maeda¹, Takahiro Igarashi¹, Suguru Terai¹, Akio Yamamoto¹, Masaaki Kuzuhara², Biplab Sarkar^{3,4}, Hiroshi Amano³, and Joel T. Asubar¹ ¹University of Fukui, Japan, ²Kwansei Gakuin University, Japan, ³Nagoya University, Japan, ⁴Indian Insitute of Technology, India

[P1-078]

A Novel Threshold Voltage Model for GaN Vertical Junctionless Fin-MOSFETs

Ankita Mukherjee, Smriti Singh, Tanmoy Pramanik, and Biplab Sarkar Indian Institute of Technology Roorkee, India

[P1-079]

Enhancement of GaN Vertical Transistor Performance Through Trench Sidewall Treatment

Zhi-Xiang Zhang, Yu-Chuan Chu, Chih-Kang Chang, and Jian-Jang Huang National Taiwan University, Taiwan

[P1-080]

Optimization and Characterization of P-type Gallium Nitride Contacts for High Power GaN Vertical **Device Applications**

Donghan Kim^{1,2}, Hongsik Park¹, Sung-Beum Bae², and Hyung-seok Lee²

¹Kyungpook National University, Korea, ²Electronics and Telecommunications Research Institute, Korea

[P1-081]

Quaternary InAlGaN/GaN HEMTs with Oxygen Plasma Treatment

Juyeong Park¹ and Jae-Hyung Jang²

¹Gwangju Institute of Science and Technology, Korea, ²Naju Korea Institute of Energy Technology, Korea

[P1-082]

Optimizing GaN FinFET Fabrication via TMAH Wet Etching Techniques

Hyun-Woo Lee^{1,2}, Soo-Young Moon^{1,2}, Dong-Han Kim¹, Hyeon-Tak Kwak¹, Sang-Mo Koo², Sung-Bum Bae¹, and Hyung-Seok Lee¹

¹Electronics and Telecommunications Research Institute, Korea, ²Kwangwoon University, Korea

[P1-083]

Influence of Schottky Barrier as a Edge Termination Method and Effect based on Schottky Barrier

J. Oh¹, M. Kim¹, H. Lee¹, C. Park¹, Y.-J. Cha¹, J. W. Seo¹, A. B. M. H. Islam¹, J.Cho², and J. S. Kwak¹ ¹Korea Institute of Energy Technology, Korea, ²Jeonbuk National University, Korea

[P1-084]

Band Engineering of Polarization Induced 2D Hole Gases in GaN/AIGaN Heterostructures

Pengfei Shao¹, Siqi Li¹, Hui Guo¹, Tao Tao¹, Zili Xie¹, Bin Liu¹, Dunjun Chen¹, Youdou Zheng¹, Rong Zhang¹, and Ke Wanq1,2

¹Nanjing University, China, ²RIKEN, Japan

[P1-085]

The Effects of Different Oxidation Methods on GaN High Electron Mobility Transistors (HEMTs)

Yu-Hsuan Lu, Chin-Yu Liu, Kai-Wen Hsiao, and Chao-Hsin Wu National Taiwan University, Taiwan

[P1-086]

A Symbolic Regression Derived Analytical Model Framework for Evaluating DIBL in Vertical GaN Fin-**FETs**

Smriti Singh, Aasim Ashai, Ankita Mukherjee, Tanmoy Pramanik, and Biplab Sarkar Indian Institute of Technology Roorkee, India

[P2] Poster Session 2		
	Session Date	Oct. 17(Thu.), 2024
	Session Time	09:00-10:30
	Session Room	Room C (Forum 1, 3F)

[P2-001]

Optimizing Normally-Off Operation of β -Ga₂O₃ Heterojunction Field Effect Transistors with p-NiO Integration for Improved Efficiency

Joonhui Park, Hanbit Kim, Sanghun Kim, Tajun Park, Yusup Jung, Taiyoung Kang, and Sinsu Kyoung PowerCubeSemi Inc., Korea

[P2-002]

Improving Electrical Properties with NiO/ β-Ga₂O₃ Heterojunction Diode by Inserting Co-doped P-type Li-NiMgO Layer

Ho Jung Jeon and You Seung Rim Sejong University, Korea

[P2-003]

Sn-Doped α-Ga₂O₃ Epitaxial Growth with Control Doping Concentration by Mist-CVD

Jang Hyeok Park¹, Jung Yeop Hong², Jung Hee Park², Young Kyun Jung², and You Seung Rim¹ ¹Sejong University, Korea, ²Hyundai Motor Group, Korea

[P2-004]

Enhanced Thermal Management in Next-Generation Power Modules: A Computational Study on Wide **Bandgap Semiconductors**

G. Lee and B. Ma Korea Electronics Technology Institute, Korea

[P2-006]

Structural Stability and Electronic Properties of (RhGa)₂O₃ and (RhAl)₂O₃ Alloys: A First-Principles Study Kenta Matsubara, Toru Akiyama, and Takahiro Kawamura Mie University, Japan

[P2-007]

Effect of Film Thickness on the Long Term Memory in the Multi-Wavelength Ga₂O₃-Based **Optoelectronic Synapse Devices**

Hee-Jin Kim, Hye Jin Lee, Dabin Jeon, and Sung-Nam Lee Tech University of Korea, Korea

[P2-008]

Wavelength-Dependent Optoelectronic Synaptic Properties in Ga₂O₃-Based Memcapacitors

Hye Jin Lee, Seung Hun Lee, Dabin Jeon, Jeong-Hyeon Kim, and Sung-Nam Lee Tech University of Korea, Korea

[P2-009]

Effect of Post-Annealing on Structural and Optical Properties of Mist-CVD Grown Amorphous Ga₂O₃

Manami Miyazaki, lori Yamasaki, Yuma Tanaka, Masatoshi Koyama, Akihiko Fujii, and Toshihiko Maemoto Osaka Institute of Technology, Japan

[P2-010]

Low Temperature Growth of Amorphous Ga, O3 on C-plane Sapphire Substrates by Mist Chemical Vapor Deposition

lori Yamasaki, Manami Miyazaki, Yuma Tanaka, Masatoshi Koyama, Akihiko Fujii, and Toshihiko Maemoto Osaka Institute of Technology, Japan

[P2-011]

Band Offsets and Interface Engineering of κ-Ga₂O₃/α-Ga₂O₃ Hetero-Interface

Chan Woong Kim, Ha Young Kang, Yoonho Choi, and Roy Byung Kyu Chung Kyungpook National University, Korea

[P2-012]

Impact of Fluorine Dopant on the Growth and Phase Stability of K-Ga₂O₃

Ha Young Kang¹, Chan Woong Kim¹, Yoonho Choi¹, Minseok Choi², and Roy Byung Kyu Chung¹ ¹Kyungpook National University, Korea, ²Inha University, Korea

[P2-013]

Shaping of β-Ga₂O₃ Crystal Ingot by Controlling Temperature Distribution in Edge-Defined Film-Fed

Tae-Hun Gu^{1,2}, A-Ran Shin^{1,2}, Yun-Ji Shin¹, Seong-Min Jeong¹, Sung-Sik Lee², and Si-Young Bae³ ¹Korea Institute of Ceramic Engineering and Technology, Korea, ²Pusan National University, Korea, ³Pukyong National University, Korea

[P2-014]

Impurity Control in β -Ga₂O₃ Single Crystals Grown by EFG Method Using Pre-Melt and Post-Annealing A-Ran Shin^{1,2}, Tae-Hun Gu^{1,2}, Yun-Ji Shin¹, Seong-Min Jeong¹, Hee-Soo Lee², and Si-Young Bae³ ¹Korea Institute of Ceramic Engineering and Technology, Korea, ²Pusan National University, Korea, ³Pukyong National University, Korea

[P2-015]

Investigation of Structural and Electrical Properties of F-Doped α-Ga₂O₂

Yoonho Choi, Chan Woong Kim, Ha Young Kang, and Roy Byung Kyu Chung Kyungpook National University, Korea

[P2-016]

Growth of β-Ga₂O₃ Single Crystal Under Ambient Conditions

Byeongcheol Choe, Sungkyun Park, and Jong Mok Ok Pusan National University, Korea

[P2-017]

Investigation of Chemical Etching Features and Defects on (100) and (001) β-Ga₂O₃ Single Crystals Grown by EFG Method

Mee-Hi Choi^{1,2}, Soon-Ku Hong³, Seong-Min Jeong¹, Si-Young Bae⁴, and Yun-Ji Shin¹ ¹Korea Institute of Ceramic Engineering and Technology, Korea, ²Pusan National University, Korea, ³Chungnam National University, Korea, ⁴Pukyong National University, Korea

[P2-019]

Properties of La-Doped Gallium Oxide Nanostructure by Electrospinning

Hyeongju Cha¹, Heejoong Ryou¹, Sunjae Kim¹, Sung Beom Cho², and Wan Sik Hwang ¹ ¹Korea Aerospace University, Korea, ²Ajou University, Korea

[P2-020]

Sn-Doped β-Ga₂O₃ Thin Films Grown on Off-Axis Sapphire Substrates by LPCVD Using Ga-Sn Alloy Solid Source

Han Yang^{1,2}, Songhao Wu^{1,2}, Hua Yang¹, Ran Yao¹, Yuan Xiao Ma², Yiyun Zhang¹, Xiaoyan Yi¹, Junxi Wang¹, Yeliang Wang², and Jinmin Li¹

¹Institute of Semiconductors, Chinese Academy of Sciences, China, ²Beijing Institute of Technology, China

[P2-022]

2kV-Class β-Ga₂O₃/4H-SiC Heterojunction Schottky Barrier Diode by Aerosol Deposition Method Ji-Hyun Kim, Young-Hun Cho, Ji-Soo Choi, Geon-Hee Lee, and Sang-Mo Koo Kwangwoon University, Korea

[P2-023]

High Performance Solar-Blind Deep UV Photodetectors based on Ga₂O₃/4H-SiC Heterojunction Diodes by Aerosol Deposition

Ji-Soo Choi, Ji-Hyun Kim, Seung-Hwan Chung, Geon-Hee Lee, and Sang-Mo Koo Kwangwoon University, Korea

[P2-024]

Structural, Optical, and Electrical Characteristics of Metastable κ-Phase Ga₂O₃ Grown by MOCVD Using H₂O as an Oxygen Precursor

Dong Wook Lee, Yoon Jae Lee, and Honghyuk Kim Korea Photonics Technology Institute, Korea

[P2-025]

Atomistic Study of $\beta \rightarrow \gamma$ Phase Transformations in Ga_2O_3

Ru He and Flyura Djurabekova University of Helsinki, Finland

[P2-026]

Characteristic of Amorphous Oxide-Based Thin Film Transistors Using Capping Layer

Jae-Sung Yoo, Tae-Kyun Moon, Sung-Yun Byun, and Kyoung-Kook Kim Tech University of Korea, Korea

[P2-027]

High-Performance β-Ga₂O₃ Solar-Blind Photodetectors Grown by MOCVD with CF₄ Treatment

An-Na Cha¹, Gieop Lee¹, Sea Cho¹, Jeong Soo Chung¹, Young-Boo Moon², Myung Sik Kim², Moo Sung Lee¹, and Jun-Seok Ha1

¹Chonnam National University, Korea, ²UJL Inc., Korea

[P2-029]

Effect of Adhesives at Initial Stage of Growth in SiC Single Crystal Grown by PVT Method

G. U. Lee, M. G. Kang, Y. J. Choi, G. J. Song, N. K. Kim, M. S. Park, K. H. Jung, and W. J. Lee Dong-Eui University, Korea

[P2-030]

A Design of 1.2 kV SiC MOSFET with Split-Gate for Improvement of Breakdown Characteristics and HF-

Kanghee Shin¹, Dongkyun Kim¹, Minu Kim¹, Junho Park¹, Hyowon Yoon², and Ogyun Seok² ¹Kumoh National Institute of Technology, Korea, ²Pusan National University, Korea

[P2-031]

The Third Quadrant Curve Shifts of 4H-SiC SBD-Embedded MOSFETs

Wei-Tse Fu, Kung-Yen Lee, Pei-Chun Liao, Xue-Fen Hu, and Wei-Shan Zou National Taiwan University, Taiwan

[P2-032]

Influence of Oxidation Time and Method on 4H-SiC MOS Capacitor Characteristics

Young Jae Park, Seongjun Kim, Joon Kim, Hyeon Ju Hwang, Yu Jeong Lee, Kyeong Keun Choi, Woong-Suk Yang, Sung-Woong Han, Dae-Hwan Kang, and Hoon-Kyu Shin Pohang University of Science and Technology, Korea

[P2-033]

Growth of SiC Single Crystals from Crushed CVD-SiC Block via Physical Vapor Transport Method

Ju-Hyeong Sun¹, Jae-Hyeon Park^{1,2}, Yun-Ji Shin¹, Si-Young Bae³, Won-Jae Lee⁴, and Seong-Min Jeong¹ ¹Korea Institute of Ceramic Engineering and Technology, Korea, ²Pusan National Univeristy, Korea, ³Pukyong National University, Korea, ⁴Dong-Eui University, Korea

[P2-034]

Development of a Real-Time Simulator for Physical Vapor Transport of SiC by Machine Learning **Techniques**

Woon-Hyeon Jeong¹, Ga-Ae Ryu¹, Ju-Hyeong Sun¹, Jae-Hyeon Park^{1,2}, Yun-Ji Shin¹, Si Young Bae³, Sangil Hyun¹, and Seong-Min Jeong¹

¹Korea Institute of Ceramic Engineering and Technology, Korea, ²Pusan National University, Korea, ³Pukyong National University, Korea

[P2-035]

Control of the Temperature Gradient in the Rapid Growth of Bulk SiC Crystals via the Physical Vapor Transport Method

Jae-Hyeon Park^{1,2}, Ju-Hyeong Sun¹, Woon-Hyeon Jeong¹, Yun-Ji Shin¹, Si-Young Bae³, Won-Jae Lee⁴, and Seong-Min Jeong¹

¹Korea Institute of Ceramic Engineering and Technology, Korea, ²Pusan National University, Korea, ³Pukyong National University, Korea, ⁴Dong-Eui University, Korea

[P2-036]

Impact of Crystallographic Orientation and High-Temperature Bias Stress on 4H-SiC MOSFET Reliability Min-Yeong Kim, Hyun-Woo Lee, Seung-Hwan Chung, and Sang-Mo Koo Kwangwoon University, Korea

[P2-037]

Influence of the Temperature Gradient on the Defect Formation Mechanism in the Initial Stage of PVT Growth

Ju-Hyeong Sun¹, Jungwoo Choi², Myung-Ok Kyun², Shunta Harada³, Soon-Ku Hong⁴, Seong-Min Jeong¹, Si-Yeong Bae⁵, and Yun-Ji SHIN¹

¹Korea Institute of Ceramic Engineering and Technology, Korea, ²Senic Inc, Korea, ³Nagoya University, Japan, ⁴Chungnam National University, Korea, ⁵Pukyong National University, Korea

[P2-038]

Impact of the Chip Size on Reverse Recovery in SiC MOSFETs

Yeonjun Kim and Hyemin Kang Korea Institute of Energy Technology, Korea

[P2-039]

Effects of Parasitic Inductance on Current Spike in SiC MOSFETs

Taehyun Jang and Hyemin Kang Korea Institute of Energy Technology, Korea

[P2-040]

Transport Mechanisms at TiAl Contact on P-type 4H-SiC for CMOS Application

Seongjun Kim, Young Jae Park, Woong-Suk Yang, Sung-Woong Han, Kyeong-Keun Choi, Dae-Hwan Kang, and Hoon-Kyu Shin

Pohang University of Science and Technology, Korea

[P2-041]

Hydrogen (H₂) Gas FET-Sensor based on Ta₂O₅ Film on SiC Substrate

Kyeong-Keun Choi and Sung-Kyu Kim Pohang University of Science and Technology, Korea

[P2-042]

Investigation of Surface Morphology by Al Ion Implantation and High Temperature Post-Implantation Annealing on 4H-SiC under C-Cap

Sung-Woong Han, Seongjun Kim, Woong-Suk Yang, Kyeong-Keun Choi, Young Jae Park, Joon Kim, Dae-Hwan Kang, and Hoon-Kyu Shin

Pohang University of Science and Technology, Korea

[P2-043]

Effects of Electrical Field During Current Stress on Electrical Characteristics of SiO₂/4H-SiC MOSFETs

Min-Woo Ha¹ and Ogyun Seok²

¹Myongji University, Korea, ²Pusan National University, Korea

[P2-044]

A TMBS Embedded 1.7 KV SiC UMOSFET

Jia-Wei Hu, Yi-Jie Wu, Chuan-Fu Lin, Kuan-Min Kang, and Chih-Fang Huang National Tsing Hua University, Taiwan

[P2-045]

Effect of Annealing Temperature on The Properties of Ni/Ti/Au Ohmic Contacts on N-Type SiC

Jongbae Kang¹, Pyeung Hwi Choi^{2,3}, Sang-Hun Lee³, Seong-Ju Park¹, and Jae-Hyung Jang¹ ¹Korea Institute of Energy Technology, Korea, ²Samsung Electronics Co., Ltd., Korea, ³Gwangju Institute of Science and Technology, Korea

[P2-046]

Carbon Incorporation in MOCVD-Grown hBN and Its Optoelectronic Characteristics

Semi Im, Seokho Moon, and Jong Kyu Kim Pohang University of Science and Technology

[P2-047]

Remote Moiré Engineering of Exciton Polarons in Monolayer MoSe₂ on Twisted hBN

Minhyun Cho^{1,2}, Biswajit Datta², Kwanghee Han^{1,2}, Saroj B. Chand³, Pratap Chandra Adak², Sichao Yu², Kenji Watanabe⁴, Takashi Taniquchi⁴, James Hone⁵, Gabriele Grosso³, Vinod M. Menon², and Young Duck Kim¹ ¹Kyung Hee University, Korea, ²City College of New York, USA, ³City University of New York, USA, ⁴National Institute for Materials Science, Japan, ⁵Columbia University, USA

[P2-048]

Deep UV Photoluminescence Characterization of Pristine and Carbon Doped Hexagonal Boron Nitride

Seung Tae Kim1, Suk Hyun Kim1, Kyungho Park1, Minseong Kwon12, Young Gie Lee12, HeeYeon Lee1, Kenji Watanabe³, Takashi Taniguchi³, and Young Duck Kim¹

¹Kyung Hee University, Korea, ²Korea Institute of Science and Technology, Korea, ³National Institute for Materials Science, Japan

[P2-049]

Tunable Moiré Superlattice Potentials in Twisted Hexagonal Boron Nitride

Taehyung Kim¹, Kwanghee Han¹, Minhyun Cho^{1,2}, Seung Tae Kim¹, Suk Hyun Kim¹, Sang Hwa Park³, Sang Mo Yang³, Kenji Watanabe⁴, Takashi Taniguchi⁴, Vinod Menon², and Young Duck Kim¹ ¹Kyung Hee University, Korea, ²City University of New York, USA, ³Sogang University, Korea, ⁴National Institute for Materials Science, Japan

[P2-050]

Localized Emission Control in hBN: Stable UV Color Centers via Electric Field

Kyeongho Park¹, Seungmin Park¹, Minseong Kwon^{1,2}, Suk Hyun Kim¹, Kenji Watanabe³, Takashi Taniguchi³, and Young Duck Kim¹

¹Kyung Hee University, Korea, ²Korea Institute of Science and Technology, Korea, ³National Institute for Materials Science, Japan

[P2-051]

Transport Band Gap Measurement of Large-Area hBN by Using Direct and Inverse Photoemission Spectroscopy

Min-Jae Maeng¹, Kyu-Myung Lee¹, Jong-Am Hong¹, Sunho Park¹, Hayoung Ko², Seung Jin Lee², Soo Min Kim³, Young-Kyun Kwon¹, and Yongsup Park¹

¹Kyung Hee University, Korea, ²Sungkyunkwan University, Korea, ³Sookmyung Women's University, Korea

[P2-052]

Remote Modulation Doping via Hexagonal Boron Nitride Surface Engineering

Heeyeon Lee¹, Minseong Kwon^{1,2}, Kenji Watanabe³, Takashi Taniguchi³, Chaun Jang², and Young Duck Kim¹ ¹Kyung Hee University, Korea, ²Korea Institute of Science and Technology, Korea, ³National Institute for Materials Science, Japan

[P2-053]

High Electric Field Vertical Tunneling Transports in Hexagonal Boron Nitride

Young Jae Kim¹, Seungmin Park¹, Kenji Watanabe², Takashi Taniquchi², and Young Duck Kim^{1,2} ¹Kyung Hee University, Korea, ²National Institute for Materials Science, Japan

[P2-054]

hBN-Based Photonic Crystal Cavities for Photonic Integrated Circuits

Sunjung An¹, Minhyun Cho¹, Junghyun Sung², Su Hyun Gong², Kenji Watanabe³, Takashi Taniguchi³, and Young Duck Kim¹

¹Kyung Hee University, Korea, ²Korea University, Korea, ³National Institute for Materials Science, Japan

[P2-055]

Transparent Neutron Shielding Layer based on Boron Nitride for Space Windows

Dobin Kim¹, Geunpil Kim¹, Hwi-Joon Jeong², Jinhwan Kim², Minjae Isaac Kwon³, Inkyu Park³, Jongbum Kim¹, and Jaehyun Park¹

¹Korea Institute of Science and Technology, Korea, ²Korea Atomic Energy Research Institute, Korea, ³University of Seoul, Korea

[P2-056]

Deep-Ultraviolet Electroluminescence in Van der Waals Heterostructures of Hexagonal Boron Nitride

Yerin Han^{1,2}, Sangho Yoon^{1,2}, Su-Beom Song^{1,2}, So Young Kim^{2,3}, Sera Yang^{1,2}, Seung-Young Seo^{1,2}, Soonyoung Cha^{1,2}, Kenji Watanabe³, Takashi Taniguchi³, Jun Sung Kim³, Moon-Ho Jo^{1,2}, and Jonghwan Kim^{1,2,3} ¹Institute for Basic Science, Korea, ²Pohang University of Science and Technology, Korea, ³National Institute for Materials Science, Japan

[P2-057]

Electroluminescence from Isolated Color Centers in Hexagonal Boron Nitride

Gyuna Park^{1,2}, Ivan Zhigulin³, Hoyoung Jung^{1,2}, Jake Horder³, Karin Yamamura³, Yerin Han^{1,2}, Hyunje Cho^{1,2}, Hyeon-Woo Jeong², Kenji Watanabe⁴, Takashi Taniguchi⁴, Myungchul Oh^{1,2}, Gil-Ho Lee², Moon-Ho Jo^{1,2}, Igor Aharonovich³, and Jonghwan Kim^{1,2}

¹Institute for Basic Science, Korea, ²Pohang University of Science and Technology, Korea, ³University of Technology Sydney, Australia, ⁴National Institute for Materials Science, Japan

[P2-058]

Enhanced Absorption in Hexagonal Boron Nitride via Fabry-Perot Resonance

Seong Joon Jeon^{1,2}, Su Beom Song^{1,2}, Kenji Watanabe³, Takashi Taniguchi³, Moon-ho Jo^{1,2}, and Jonghwan Kim^{1,2}

¹Pohang University of Science and Technology, Korea, ²Institute for Basic Science, Korea, ³National Institute for Materials Science, Japan

[P2-059]

Atomics Sawtooth-Like Metal Films for vdW-Layered Single-Crystal Growth

Hayoung Ko¹, Soo Ho Choi¹, Yunjae Park², Seungjin Lee¹, Chang Seok Oh¹, Sung Youb Kim², Young Hee Lee¹, Soo Min Kim3, Feng Ding1,4, and Ki Kang Kim1

¹Sungkyunkwan University, Korea, ²Ulsan National Institute of Science and Technology, Korea, ³Sookmyung Women's University, Korea, 4Chinese Academy of Sciences, China

[P2-060]

Unveiling Borazine's Role in Temperature-Dependent hBN Growth on Ni Substrate

Jaewon Kim^{1,2}, Joo Song Lee¹, Yu Jin Kim¹, and Hyeon Suk Shin^{1,2} ¹Institute for Basic Science, Korea, ²Sungkyunkwan University, Korea

[P2-061]

Hexagonal Boron Nitride/Gallium Nitride Heterojunction for High-Performance Deep Ultraviolet Photodetection

Jawon Kim, Seokho Moon, and Jong Kyu Kim Pohang University of Science and Technology, Korea

[P2-062]

Inducing Photoluminescence in Hexagonal Boron Nitride by Dichloromethane Treatment

Kyeongseo Cho¹, Duhee Yoon¹, Young Duck Kim², Dmitrii Litvinov³, Maciej Koperski³, and Hyeonsuk Shin¹ ¹Sungkyunkwan University, Korea, ²Kyung Hee University, Korea, ³National University of Singapore, Singapore

[P2-063]

Synthesis of Thickness-Controllable Uniform Crystallized Hexagonal Boron Nitride for High-**Performance Memristor**

Seungjin Lee¹, Hayoung Ko¹, Soo Min Kim², and Ki Kang Kim¹ ¹Sungkyunkwan University, Korea, ²Sookmyung Women's University, Korea

[P2-064]

High Crystalline Quality Heteroepitaxial Diamond Growth Using Epitaxial Lateral Overgrowth

Yoonseok Nami, Taemyung Kwaki, Geunho Yooi, Joocheol Jeongi, Yeonghwa Kwoni, Seong-Woo Kimi, and Okhvun Nam¹

¹Tech University of Korea, ²Orbray Co., Ltd., Japan

[P2-065]

Heteroepitaxial Growth of Twin-Free Single Crystal (111) Diamond on R-Plane Al₂O₃ Substrate

Seolyoung Oh, Taemyung Kwak, Yeonghwa Kwon, Yoonseok Nam, Eonhee Roh, Geunho Yoo, and Okhyun Nam

Tech University of Korea, Korea

[P2-066]

High Power Boron-Doped Diamond Metal Semiconductor Field Effect Transistor Using Selective Grown

Eonhee Roh¹, Taemyung Kwak¹, Seolyoung Oh¹, Yeonghwa Kwon¹, Yoonseok Nam¹, Geunho Yoo¹, Seongwoo Kim², and Okhyun Nam¹

¹Tech University of Korea, Korea, ²Orbray Co., Ltd., Japan

[P2-067]

Heteroepitaxial Diamond Grown on Compliant Substrate Using SOI Air-Void Structure

Yeonghwa Kwon, Uiho Choi, Seolyoung Oh, Yoonseok Nam, Taemyung Kwak, Joocheol Jeong, Eonhee Roh, Geunho Yoo, and Okhyun Nam

Tech University of Korea, Korea

[P2-068]

Growth of Heteroepitaxial Diamond on 4H-SiC Single Crystals by Microwave Plasma Chemical Vapor Deposition

Ki-Yeol Woo^{1,2}, Gi-Ryeo Seong¹, Nhat-Minh Phung^{1,3}, Si-Young Bae², Yun-Ji Shin¹, and Seong Min Jeong¹ ¹Korea Institute of Ceramic Engineering and Technology, Korea, ²Pukyong National University, Korea, ³Changwon National University, Korea

[P2-069]

Design of Substrate Holders for the Rapid Growth of Diamond via Microwave Plasma Chemical Vapor **Deposition Method**

Nhat-Minh Phung^{1,2}, Ki-Yeol Woo^{1,3}, Gi-Ryeo Seong¹, Si-Young Bae³, Yun-Ji Shin¹, and Seong Min Jeong¹ ¹Korea Institute of Ceramic Engineering and Technology, Korea, ²Changwon National University, Korea, ³Pukyong National University, Korea

[P2-070]

Joint Frequency-Temperature Analysis of High-Temperature Hopping Conduction in Heavily Boron-**Doped Diamond**

Anna Solomnikova and Vasily Zubkov

St. Petersburg State Electrotechnical University, Russia

[P2-072]

Effect of Thermal Treatment on Long Term Memory Properties of ZnO Nanoparticles-Based **Optoelectronic Synapse Devices**

Dabin Jeon, Seung Hun Lee, Hye Jin Lee, Hee-Jin Kim, and Sung Nam Lee Tech University of Korea, Korea

[P2-073]

Improvement of Long-Term Memory Characteristics of Carbon Nanotube Based Optoelectronic **Synapse Devices Using Spin Coating Process**

Seung Hun Lee, Jeong-Hyeon Kim, Hye Jin Lee, Dabin Jeon, Hee-Jin Kim, and Sung-Nam Lee Tech University of Korea, Korea

[P2-074]

Super-Resolution Spectroscopy of Single-Photon-Level Emission

Michał Lipka, and Michał Parniak University of Warsaw, Poland

[P2-075]

WO₃ Nanosheets Integrated Ti₃C₂ Heterojunctions with Synergistic Effects for Enhanced Water Splitting Dong Jin Lee, Deuk Young Kim, and P. Ilanchezhiyan Dongguk University, Korea

[P2-076]

Crystallization Kinetics of α -Aluminum Oxide on Graphene via Solid Phase Epitaxy

Jeongwoon Kim¹, Hyuk Jun Lee², Jongil Kim³, Jaeyoung Baik¹, Seoung Hyeok Lee¹, Jinsoo Kim¹, Hoe-Min Kwak⁴, Sangho Oh³, Young Jun Joo², and Dong-Seon Lee¹

¹Gwangju Institute of Science and Technology, Korea, ²Korea Institute of Ceramic Engineering and Technology, Korea, 3Korea Institute of Energy Technology, Korea, 4Electronics and Telecommunications Research Institute, Korea

[P2-0<u>8</u>0]

Room-Temperature Operated NO₂ Gas Sensor of n-ZnO/p-Ag₂O Nanomaterials with UV Photon Energy Jae-Hun Jeong, Jun-Young Lee, Sunwoo Lim, Yoojin Kim, and Kyoung-Kook Kim Tech University of Korea, Korea

[P2-081]

Engineering of Nitrogen Delta-Doped Diamond NV Centers for Quantum Repeater Applications

Yong Soo Lee¹, Taemyung Kwak², Ye-Eun Choi¹, Chan-Gu Kang¹, Jaepil Park¹, Sang-Wook Han¹, Seungwoo Jeon¹, Chul-ki Kim¹, Junghyun Lee¹, Okhyun Nam², and Dongyeon Daniel Kang¹ ¹Korea Institute of Science and Technology, Korea, ²Korea Polytechnic University, Korea